leaderbot.models.Davidson.train#
- Davidson.train(init_param=None, method='BFGS', max_iter=1500, tol=1e-08)#
Tune model parameters with maximum likelihood estimation method.
- Parameters:
- init_paramarray_like, default=None
Initial parameters. If None, an initial guess is used based on the cumulative counts between agent matches.
- methodstr, default=
'BFGS'
Optimization method.
'BFGS'
: local optimization (best method overall)'L-BFGS-B'
: local optimization (best method for allScaledRIJ
models)'CG'
: local optimization'Newton-CG'
: local optimization (most accurate method, but slow)'TNC'
: local optimization (least accurate method)'Nelder-Mead'
: local optimization (slow)'Powell'
: local optimization (often does not converge)'shgo'
: Hybrid global and local optimization (slow)'basinhopping'
: Hybrid global and local optimization (slow)
See scipy.optimize for further details on each of the above methods.
- max_iterint, default=1500
Maximum number of iterations.
- tolfloat, default=1e-8
Tolerance of optimization.
See also
predict
predict probabilities based on given parameters.
Notes
The trained parameters are available as
param
attribute.Examples
>>> from leaderbot.data import load >>> from leaderbot.models import Davidson >>> # Create a model >>> data = load() >>> model = Davidson(data) >>> # Train the model >>> model.train() >>> # Make inference >>> prob = model.infer()