leaderbot.models.RaoKupper.loss#
- RaoKupper.loss(w=None, return_jac=False, constraint=False)#
Total loss for all data instances.
- Parameters:
- warray_like, default=None
Parameters. If None, the pre-trained parameters are used, provided is already trained.
- return_jacbool, default=False
if True, the Jacobian of loss with respect to the parameters is also returned.
- constraintbool, default=False
If True, the constrain on the parameters is also added to the loss.
- Returns:
- lossfloat
Total loss for all data points.
- if return_jac is True:
- jacnp.array
An array of the size of the number of parameters, representing the Jacobian of loss.
- Raises:
- RuntimeWarning
If loss is
nan
.- RuntimeError
If the model is not trained and the input
w
is set to None.
Examples
>>> from leaderbot.data import load >>> from leaderbot.models import Davidson >>> # Create a model >>> data = load() >>> model = Davidson(data) >>> # Generate an array of parameters >>> import numpy as np >>> w = np.random.randn(model.n_param) >>> # Compute loss and its gradient with respect to parameters >>> loss, jac = model.loss(w, return_jac=True, constraint=False)