leaderbot.models.BradleyTerry.match_matrix#
- BradleyTerry.match_matrix(max_rank=None, density=True, source='both', win_range=None, tie_range=None, horizontal=False, bg_color='none', fg_color='black', save=False, latex=False)#
Plot match matrices of win and tie counts of mutual matches.
- Parameters:
- max_rankint, default=None
The maximum number of agents to be displayed. If None, all agents in the input dataset will be ranked and shown.
- densitybool, default=True
If False, the frequency (count) of win and tie are plotted. If True, the probability of the win and tie are plotted.
- source{
'observed'
,'predicted'
,'both'
}, default='both'
The source of data to be used:
'observed'
: The observed win and tie counts based on the input training data to the model.'predicted'
: The prediction of win and tie counts by the trained model.'both'
: Plots both of the observed and predicted data.
- win_rangetuple, default=None
The tuple of two float numbers
(vmin, vmax)
determining the range of the heatmap plot for win matrix. If None, the minimum and maximum range of data is used.- tie_rangetuple, default=None
The tuple of two float numbers
(vmin, vmax)
determining the range of the heatmap plot for tie matrix. If None, the minimum and maximum range of data is used.- horizontalbool, default=False
If True, the subplots for win and tie are placed row-wise. If False, they are plotted in column-wise.
- bg_colorstr or tuple, default=’none’
Color of the background canvas. The default value of
'none'
means transparent.- fg_colorstr or tuple, default=’black’
Color of the axes and text.
- savebool, default=False
If True, the plot will be saved. This argument is effective only if
plot
is True.- latexbool, default=False
If True, the plot is rendered with LaTeX engine, assuming the
latex
executable is available on thePATH
. Enabling this option will slow the plot generation.
- Raises:
- RuntimeError
If the model is not trained before calling this method.
See also
Examples
>>> from leaderbot.data import load >>> from leaderbot.models import Davidson >>> # Create a model >>> data = load() >>> model = Davidson(data) >>> # Train the model >>> model.train() >>> # Plot match matrices for win and tie >>> model.match_matrix(max_rank=20, density=True, source='both', ... latex=True, save=True, horizontal=True, ... win_range=[0.2, 0.6], tie_range=[0.15, 0.4])
The above code provides the text output and plot below.
Similarly, plots for win and tie frequencies can be obtained as follows:
>>> # Plot match matrices for win and tie >>> model.match_matrix(max_rank=20, density=False, source='both', ... latex=True, save=True, horizontal=True, ... win_range=[0, 3000], tie_range=[0, 1500])